Exercise 5.1

1. (a)

Height of a child (x)	1	2
Weight of a child y	2	4

Here with the increase in x the y is also increase in the same manner. it's a direct variation.

(b)	Distance (x)	5	8
	Time taken (y)	2	3

Here with the increase in but y is not increase in the same manner. it is not a direct variation.

(c)	Wages of worker (x)	₹ 200	₹ 400
	working hour (y)(hour)	1	2

Here with the increase in x the y is also increase in the same manner. it is a direct variation.

(d)	No of student (x)	1	2
	Fees paid by then (y) ₹	500	1000

Here with the increase in *x* they is also increase in the same manner. it is a direct variation.

(e) No of rainy day
$$(x)$$
Amount of rainfall (y) 2 cm

Here with the increase in but y is not increase in the same manner.

it is not a direct variation

2. (a)
$$\frac{5}{15}$$
 $\frac{1}{3}$; $\frac{8}{24}$ $\frac{1}{3}$; $\frac{9}{27}$ $\frac{1}{3}$; $\frac{11}{33}$ $\frac{1}{3}$ $\frac{5}{15}$ $\frac{8}{24}$ $\frac{9}{27}$ $\frac{11}{33}$

Since, the ratio of the corresdoing values of x and y is equal $\frac{1}{3}$, x and y are in direct

variation and the constant of variation is $\frac{1}{3}$.

(b)
$$\frac{3}{5}$$
 $\frac{5}{3}$ $\frac{6}{10}$ $\frac{9}{15}$ $\frac{10}{6}$

The ratio are not corresdonation.

x and y are not direct variation.

(c)
$$\frac{8}{2}$$
 $\frac{4}{1}$; $\frac{16}{4}$ $\frac{4}{1}$; $\frac{20}{5}$ $\frac{4}{1}$; $\frac{32}{8}$ $\frac{4}{1}$; $\frac{60}{15}$ $\frac{4}{1}$

$$\frac{8}{2}$$
 $\frac{16}{4}$ $\frac{20}{5}$ $\frac{32}{8}$ $\frac{60}{15}$

Since the ratio of the corresdoning values of x and y is equal $\frac{4}{1}$, x and y are indirect variation and the constant of variation is $\frac{4}{1}$.

3. (a) Since x and y vary directly

So the missing entries are

60	120	180	225	300	375
4	8	12	15	20	25

(b)
$$\frac{90}{45} \quad \frac{2}{1}$$

$$\frac{x_1}{3.5} \quad \frac{2}{1}$$

$$x_1 \quad 3.5 \quad 2 \quad 7$$

$$\frac{x_2}{6.5} \quad \frac{2}{1}$$

$$x_2 \quad 6.5 \quad 2 \quad 13$$

$$\frac{15}{x_3} \quad \frac{2}{1}$$

$$15x_1 \quad 2x_3$$

$$\begin{array}{ccccc}
x_3 & \frac{15}{2} & 7.5 \\
\frac{x_4}{9.25} & \frac{2}{1} \\
x_4 & 2 & 9.25 \\
x_4 & 18.5 \\
\underline{26.5} & \frac{2}{1} \\
26.5 & 2 & x_5 \\
x_5 & \frac{26.5}{2} \\
x_5 & 13.25
\end{array}$$

*x*₅

So the missing entries are.

х	7	9	13	15	18.5	26.5
у	3.5	4.5	6.5	7.5	9.25	13.25

4. Cost of 15 note books is ₹ 240

Cost of books ₹	Number of note book
240	15

$$\frac{240}{160} \quad \frac{15}{x} \qquad \text{(cross multiply)}$$

$$240 \quad x \quad 15 \quad 160$$

$$x \quad \frac{15}{240} \quad 10$$

Thus, 10 note books can be buy for ₹ 160.

5. 20 litres petrol consumed for 115 km.

Distance (km)	Petrol (litres)	
115	20	

$$\frac{115}{345} \quad \frac{20}{x} \qquad \text{(cross multiply)}$$

$$115x \quad 345 \quad 20$$

$$x \quad \frac{345}{115} \quad 60$$

60 litres used for 345 km.

6. 110 metres distance covered in 130 minutes

Distance	Time taken	
110	130	
275	x	

$$\frac{110}{275} \quad \frac{130}{x}$$

Thus, Ansh takes 325 minutes to walk a distance of 275 metres.

7. Average speed of train 70 km/hTime taken 25 mintes $\frac{25}{60}$ hour

Distance speed × time taken

$$70 \quad \frac{25}{60} \quad 29.11 \text{km}$$

8. No of battles Substitute Subs

20

20 Bottles are required to make 32 serving.

9. Us dollars Rupees (₹)
150
7425
250
$$x$$

$$\frac{150}{250} \frac{7425}{x}$$

$$150x 7425 250
$$x$$

$$\frac{7425}{250} 250$$

$$\frac{7425}{x} 250$$
₹ 12375$$

150 ₹ 12375 will be the worth of 250 us dollars.

10. 8 women 5 men
$$\frac{5}{1}$$
 women $\frac{5}{1}$ men

1 women
$$\frac{5}{8}$$
 men $\frac{5}{8}$ 12 7.5 men

12 women and 8 men (7.5 8) men 15.5 men

No of men 5 Earning (in ₹)
5 625
15.5
$$x$$

$$\frac{5}{15.5} \frac{625}{x}$$

$$5 x 625 15.5$$

$$x \frac{625}{5} 15.5$$

$$x \frac{625}{5} 15.5$$

$$x \frac{625}{5} 15.5$$

Exercise 5.2

1. (a) Number of burger x 10

Cost of per burger y 15

Here with the increase in x the y also deceases in the same manner.

It is an inverse variation.

(b)	Number of workers <i>x</i>	5	10
	Time taken y	2	1

Here with the increase in x the y also decease in the same manner. It is a inverse variation.

(c)	Petrol used (l)	5	6
	Distance (km)	2	3

Here we increase in x the y is also increase in the same manner.

It is not a inverse variation.

(d)	Number of children	5	10
	Amount o food conceded ₹	100	200

Here we increase in x the y is also increase in the same manner.

It is not a inverse variation.

(e)	Speed x	100	150
	Distance y	2	1

Here we increase in x then y is also increase in the same manner.

Here it is a inverse variation.

2. (a) x y 2 16 32; 4 8 32;

8 4 32;3 12 36;12 3 36

Since the product xy in each case is not the same, x, and y show inverse variation.

- (b) xy 6 10 60; 4 15 60; 12 5 60; 30 2 60; 15 4 60. Since the product xy each case in the same x and y show inverse variation.
- (c) xy 42 2 84; 4 21 84; 14 6 84; 7 12 84; 28 3 84 Since the product xy in each case in the same x and y show inverse variation.
- 3. (a) x and y nary inversely.

(b) x_1 10 12 20 $10x_1$ 240

		x_1	$\frac{240}{10}$ 24	x_1	24
				•	
			$ \begin{array}{ccc} 16 & x_2 \\ 16x_2 \end{array} $		
					1.5
		x_2	$\frac{240}{16}$ 15	x_2	15
		12 20	$x_3 = 30$		
		240	$30x_3$		
		x_3	$\frac{240}{30}$ 8	x_3	8
	again;	12 20			
		$15x_4$	240		
		x_4	$\frac{240}{15}$ 16	x_4	16
4.	No of students		Days		
	200		30		
	300	200	x		
		$\frac{200}{300}$	$\frac{x}{30}$ (cross multiply)		
		300x	200 30		
			$\frac{200 30}{200 30} 20 \text{days}$		
		X	300 20 days		
5.	reading pages		finish book		
	8		15		
	X	15	10 x		
		$\frac{10}{10}$	$\frac{x}{8}$ (cross multiply)		
		10x	15 18		
		x	$\frac{15 8}{10} 12 \text{ pages}$		
6.	No of children		chocolates		
	8 10		5 x		
	10	8			
		10	$\frac{x}{5}$ (cross multiply)		
		10 <i>x</i>			
		X	$\frac{40}{10}$ 4 chocolates		
7.	Spraying machines	times taken (min)			
	5		36		
	2	5	x x		
		$\frac{5}{2}$	$\frac{\lambda}{36}$		
		2x	36 5		
		v	$\frac{36}{36} \frac{5}{5}$ 90 \text{ minutes.}		
		л	2		

8. Time consumed (hours) pumps
$$\begin{array}{cccc}
24 & & 5 \\
6 & & x
\end{array}$$

$$\begin{array}{ccccc}
\frac{24}{6} & \frac{x}{5} & \text{(cross multiple)} \\
6 & x & 24 & 5
\end{array}$$

$$6 \quad x \quad 24 \quad 5$$

$$x \quad \frac{24 \quad 5}{6} \quad 20 \text{ pumps.}$$
9. Speed (km/h) time taken (hours)

10. Weight of potatoes (kg)

10

18

20

$$\frac{18}{20} = \frac{x}{10}$$

20x 18 10

18 10

12. (a)
$$x = 4$$
, $y = 6$
 x is in inverse variation with y

(b)
$$x = 7$$
, $y = 4$
 x is in in verse variation with y

$$y = \frac{300}{20} = 15 \qquad y = 15$$
(d)
$$y = 16$$

$$x = y = 176$$

$$x = 16 = 176$$

$$x = \frac{176}{16} = 11 \qquad x = 11$$

Exercise 5.3

1. (a) 83%
$$\frac{83}{100}$$
 (b) 38% $\frac{38}{100}$ 0.38 (c) 45% $\frac{9}{100}$ 9:20

2. (a)
$$5\% \text{ of } x = 20$$
 (b) $8.5\% \text{ of } x = 1.615$

$$\frac{5}{100} = x = 20$$

$$5x = 20 = 100$$

$$x = \frac{4}{20} = 100$$

$$x = 400$$

3. Let the number be
$$x$$
.

Then
$$\begin{array}{r}
8.5\% \text{ of } x = 51 \\
\frac{8.5}{100} \quad x = 51 \\
x = \frac{51}{8.5} \quad 600
\end{array}$$

4. Let the maximum marks be
$$x$$
.

Bharti scored marks = 410
his percentage of marks = 82%
$$82\%$$
 of x = 410
$$\frac{82}{100} x = 410$$
$$x = \frac{410 \times 100}{22} = 500$$

5. Jagan's per month income =
$$\overline{\epsilon}$$
 18000

He spent on rent = 14% of his income He spent on other things = 54% of his income

Total spent = 14 + 54 = 68% of his income

He saved 100 68 32% of his income

He saved per month 32% of ₹ 18000

$$\frac{32}{100}$$
 18000 ₹ 5760

7. Boy's percentage 60%

Number of girls 120,

Let total no. of students be *x*.

8. Percentage of copper = 20%

Percentage of Zinc = 35%

rest (Nickel) 100 (20 35) 100 55 45%

Quantity of nickel in the allow 45% of 1.5 kg

$$\frac{45}{100}$$
 1.5 1000 gm 45 15 675 gm.

9. Let the school was open for x days in a year.

Rajant went to school for = 260 days

his attendance was = 80%

80% of
$$x$$
 260
$$\frac{80}{100} \times x = 260$$
$$\frac{4x}{5} = 260$$
$$x = \frac{5}{4} = 260$$
$$x = \frac{5}{4} = 325$$

10.

Suppose Bharat's income = ₹ 100

Amar's income = ₹ $(100 \ 20)$ ₹ 80

If Amar's income is ₹80, then Bharat's income = ₹100

If marA's income is \mathfrak{T} 1, then Bharat's income = \mathfrak{T}

If Amar's income is ₹ 100, then Bharat's income = ₹ $\frac{100}{80}$ 100 ₹ 125

Bharat's income is (125 100) 25% more

11. Suppose the price of the item was = 700

Company reduces the price = 5%

New price of the item = ₹ 100
$$\frac{100 - 5}{100}$$
 ₹ 95

Then, C.P. of the item for retailer = 395

Let the percentage of x increment to sell the item for old price.

then
$$95 \frac{95 \times x}{100} = 100$$
or
$$\frac{9500 + 95x}{100} = 100$$
or
$$y = \frac{95x + 10000 + 9500}{x + \frac{500}{95} + \frac{100}{19} + \frac{5}{19}}$$
%

12. Let third person (C) gets
$$= ₹ x$$

Then, second person (B) gets = 50% of
$$x = \frac{50 - x}{100} = \frac{x}{2}$$

and first person (A) gets = 50% of $\frac{x}{2} = \frac{50}{100} = \frac{x}{2} = \frac{x}{4}$

$$\frac{x - \frac{x}{2} - \frac{x}{4}}{4} = \frac{x}{3500}$$

$$\frac{4x - 2x - x}{4} = \frac{x}{3500}$$

$$\frac{7x}{4} = 3500$$

$$x = \frac{500}{4} = \frac{500}{4} = \frac{x}{500}$$
A gets = $\frac{x}{4} = \frac{2000}{4} = \frac{x}{4} = \frac{x}{4} = \frac{x}{4}$
B gets = $\frac{x}{4} = \frac{2000}{4} = \frac{x}{4} = \frac{x}{4}$

13. Let the total votes were x

(a) Winner candidate got = 53% of x
Winner candidate got =
$$\frac{53}{100} \times \frac{53x}{100}$$

His opponent candidate got = 31% of x

(b) Winner candidate got
$$\frac{53}{100}$$
 100000 53000

Now, the winning margin 53000 31000 22000

14. Let the number 100

Number after the increment of 40% 100 + 40 = 140Decreament in the new number 40% of 140

$$\frac{40}{100} \quad 140 \quad 56$$
hal number \quad 140 \quad 56 \quad 84

Final number 140 56 84 Net decrease 100 84 16

Hence, there is a net decrease of 16%.

Exercise 5.4

1. A can do a piece of work in
$$= 10$$
 days

Work done by A in 1 day
$$\frac{1}{10}$$

Similarly, work done by B in 1 day $\frac{1}{1}$

work done by
$$(A B)$$
 together in 1 day $\frac{1}{10} \frac{1}{15} \frac{3}{30} \frac{2}{30} \frac{5}{30} \frac{1}{6}$ $(A B)$ will do the work together in $\frac{1}{\frac{1}{6}}$ 6 days.

2.
A can finish a work in = 18 days

B can finish a work in
$$\frac{A}{2}$$
 day $\frac{18}{2}$ days = 9 days

Work done by A in 1 day $\frac{1}{18}$

Work done by B in 1 day $\frac{1}{9}$

Work done by $(A \ B)$ together in 1 day $\frac{1}{18} \frac{1}{9} \frac{1}{18} \frac{2}{18} \frac{3}{18} \frac{1}{6}$

They can finish together $\frac{1}{6}$ part of the work in a day.

3. Man can do a piece of work in = 5 days (Man + Son) together can do the same work in= 3 days

Work done by man in 1 day

Work done by (Man + Son) in 1 day

Work done in only son in 1 day

 $\frac{5}{3}$ $\frac{1}{3} \quad \frac{1}{5} \quad \frac{5}{15} \quad \frac{3}{15}$ $\frac{1}{2} \quad \frac{15}{2} \quad 7\frac{1}{2} \text{ days}$ Son can do the work in

4. A can do a job in = 16 days

B can do the same job in = 12 days

A B C can do the job = 4 days

Work done by A in day 16

Work done by B in 1 day

Work done by $(A \ B \ C)$ in 1 day

Work done by C in 1 day Work done by $(A \ B \ C)$ in 1 day - work done by (A B) in 1 day $\frac{1}{4} \quad \frac{1}{16} \quad \frac{1}{12} \quad \frac{12 \quad 3 \quad 4}{48} \quad \frac{12 \quad 7}{48} \quad \frac{5}{48}$

 $\frac{1}{5} \quad \frac{48}{5} \text{ days} \quad 9\frac{3}{5} \text{ days}.$ C alone can do the job

5. $\frac{1}{4}$ part of the work done by P in = 10 days

Whole part, i.e. 1 work done by P completely in 10 4 40 days

40% part of the work done by Q in = 15 days

Whole part i.e. 1 work done by Q completely in $\frac{15 \ 100}{40}$ $37\frac{1}{2}$ days.

 $\frac{1}{3}$ part of the work done by Q 13 days

Whole part i.e., 1 work done by R in 13 3 39 days

Since Q takes less time (i.e., number of days) to complete the work therefore, Q will complete the work first.

6. No. of pages that Mohan type in 6 hours = 32

No. of pages that Sohan type in 1 hours $\frac{32}{6}$ $\frac{16}{3}$

No. of page that Elan type in 5 hours = 40 No. of that Elan type in 1 hours $\frac{40}{5}$

No. of pages that they type together in 1 hour $\frac{16}{3}$ 8 $\frac{16}{3}$ 24 $\frac{40}{3}$

Time taken by both to type $\frac{40}{3}$ pages = 1 hour

Time taken by both to type 1 page $\frac{3}{40}$ hours

and time taken by both to type 110 pages $\frac{3}{40}$ 110 hours $\frac{33}{4}$ 8 $\frac{1}{4}$ hours.

7. Work done by $(A \ B)$ in 1 day $\frac{1}{72}$ part

Work done by $(B \ C)$ in 1 day $\frac{1}{120}$ part

Work done by (C A) in 1 day $\frac{1}{90}$ part

Work done by $2(A \ B \ C)$ in 1 day $\frac{1}{72} \frac{1}{120} \frac{1}{90} \frac{5 \ 3 \ 4}{360}$

 $\frac{12}{360} \quad \frac{1}{30} \text{ part}$ Work done by $(A \quad B \quad C)$ in 1 day $\frac{1}{2 \quad 30} \quad \frac{1}{60} \text{ part}$

Work done by *A* in 1 day $\frac{1}{60} \frac{1}{120} \frac{2}{120} \frac{1}{120}$ part

A will complete the work in $\frac{1}{\frac{1}{1}}$ 120 days.

Work done by *B* in 1 day $\frac{1}{60} = \frac{1}{90} = \frac{3}{180} = \frac{1}{180}$ part

B will complete the work in $\frac{1}{1}$ 180 days

Work done by *C* in 1 day $\frac{1}{60} \frac{1}{72} \frac{65}{360} \frac{1}{360}$ part

180

C will complete the work in
$$\frac{1}{\frac{1}{360}}$$
 360 days.

8. Work done by
$$A$$
 in 1 day $\frac{1}{15}$ part

Work done by *B* in 1 day
$$\frac{1}{20}$$
 part

Work done by
$$(A B)$$
 together in 1 day $\frac{1}{15} \frac{1}{20} \frac{4}{60} \frac{3}{60} \frac{7}{60}$ part Work done by $(A B)$ together in 4 days $\frac{7}{60} 4 \frac{7}{15}$ part

Work done by
$$(A \ B)$$
 together in 4 days $\frac{7}{60}$ 4 $\frac{7}{15}$ part

Remaining part
$$1 \frac{7}{15} \frac{8}{15}$$
 part

$$\frac{8}{15}$$
 part of the work is left

9. Work done by A in 5 days
$$\frac{1}{3}$$
 part

Work done by A in 1 day $\frac{1}{3}$ $\frac{1}{5}$ part

Work done by *B* in 10 days
$$\frac{2}{3}$$
 part

Work done by B in 1 day
$$\frac{2}{3 \cdot 10} \cdot \frac{2}{30} \cdot \frac{1}{15}$$
 part

Work done by
$$(A \quad B)$$
 in 1 day $\frac{1}{15}$ $\frac{1}{15}$ $\frac{2}{15}$

$$(A \quad B)$$
 both can do the work in $\frac{1}{\frac{2}{15}} \frac{15}{2}$ days $7\frac{1}{2}$ days.

Work done by (pipe + leak) in 1 hour
$$\frac{1}{24}$$

Work done by (pipe + leak) in 1 hour
$$\frac{16}{24}$$
Work done by leak to empty the tank in 1 hour
$$\frac{1}{16} \frac{1}{24} \frac{3}{48} \frac{2}{48} \frac{1}{48}$$
Time taken by leak to empty the filled tank
$$\frac{1}{\frac{1}{48}} 48.$$
mber of tank that a tap can fill in 6 hour = 1 tank

Time taken by leak to empty the filled tank
$$\frac{1}{1}$$

Number of tank that a tap can fill in 1 hour
$$\frac{1}{6}$$
 tank

Part of tank filled by 1 tap in 1 hour
$$\frac{1}{6}$$
 part

Part of tank filled by 4 taps in 1 hour
$$\frac{1}{6}$$
 4 $\frac{4}{6}$ $\frac{2}{3}$ part

Then, time taken by 4 taps to fill $\frac{2}{3}$ part of tank = 1 hour

Time taken by 4 taps to 1/2 part of tank

$$\frac{1}{2}$$
 3 time taken by 4 taps to $\frac{1}{2}$ part of tank $\frac{3}{2}$ $\frac{1}{2}$ $\frac{3}{4}$ hours.

Exercise 5.5

1. Cost of the car $\stackrel{?}{\stackrel{?}{\sim}} 60,000$

Spent on its repairing ₹ 10,000

Total C.P. ₹ 60,000 + ₹ 10,000 ₹ 70,000 S.P. ₹ 77,000 gain S.P. - C.P. ₹ 77,000 - ₹ 70,000 ₹ 7000 gain %
$$\frac{\text{gain}}{C.P.}$$
 100 $\frac{7000}{70000}$ 100 10%

2. C.P. of T.V. ₹ 6,000

loss = 15%; S.P. of T.V. =?
S.P. C.P.
$$\frac{100 - loss \%}{100}$$

₹ 6000 $\frac{100 - 15}{100}$ ₹ $\frac{6000 - 85}{100}$ ₹ 5100

3. Let the C.P. of each pen be ≥ 1 .

S.P. of 15 pens = C.P. of 12 pens

but, C.P. of 12 pens ₹ 12

S.P. of 15 pens ₹ 12 and, C.P. of 15 pens ₹ 15

Here,
$$C.P. > S.P.$$

so

so,

c, C.P. > S.P.

$$loss = C.P. - S.P. \quad 15 \quad 12 \quad \text{?} \quad 3$$

$$loss\% \quad \frac{loss}{C.P.} \quad 100 \% \quad \frac{3}{15} \quad 100 \quad 20\%$$

4. Let C.P. of each book be ₹ 1.

S.P. of 16 books = C.P. of 17 books

but, C.P. of 17 books ₹17

S.P. of 16 books ₹ 17 and C.P. of 16 books ₹ 16

S.P. > C.P.Here,

gain S.P. – C.P. 17 16 ₹1 gain%
$$\frac{\text{gain}}{\text{C.P.}}$$
 100 $\frac{1}{16}$ 100 6.25%

5. Let C.P. of the article \mathbf{z}

$$loss \frac{1}{20} \quad x \quad \stackrel{?}{\underset{?}{?}} \quad \frac{x}{20}$$
S.P. $\stackrel{?}{\underset{?}{?}} 6270$

loss C.P. - S.P. by

 $\frac{x}{20}$ x 6270

6270
$$x \frac{x}{20}$$
6270 $\frac{19x}{20}$
 $x \frac{6270 \ 20}{19}$ ₹ 6600

₹ 35000 C.P. of the wheat 6.

Value of spoiled wheat
$$\frac{1}{7}$$
 of 35000 $\frac{35000}{7}$ ₹ 5000
Value of Good wheat ₹ 35000 ₹ 5000 = ₹ 30000

Value of Good wheat

gain
$$\frac{10}{100}$$
 30,000 ₹3000 loss $\frac{25}{100}$ 5000 ₹1250

Since, gain > loss

net gain 3000 1250 ₹1750 gain %
$$\frac{\text{gain}}{\text{C. P.}}$$
 100 $\frac{1750}{35000}$ 100 5%

7.

C.P. of 75 kg Mangoes ₹ 30 75 ₹ 2250
C.P. of
$$\frac{1}{3}$$
 i.e., 25 kg Mango $\frac{1}{3}$ 2250 ₹ 750

C.P. of remaining i.e., 50 kg Mangoes 2250 750 ₹1500

S.P. of 25 kg Mangoes + S.P. of 50 kg Mangoes

8. S.P. of 6 bananas = C.P. of 5 bananas

Let C.P. of each banana

Then C.P. of 5 bananas ₹5

S.P. of 6 bananas = $\mathbf{\xi}$ 5

but C.P. of 6 bananas

Since C.P. > S.P. There is a loss.

loss = C.P. – S.P.
$$\stackrel{?}{\cancel{=}} 6 \stackrel{?}{\cancel{=}} 5 \stackrel{?}{\cancel{=}} 1$$

loss % $\frac{\text{loss}}{\text{C.P.}}$ 100 $\frac{1}{6}$ 100 $\frac{50}{3}$ 16 $\frac{2}{3}$ %

9. Total C.P. of 5 fans ₹4050 50 ₹4100

$$\begin{array}{c} \text{gain} = 15\%, \text{ S.P.} = ?\\ \text{S.P. of 5 fans} & \frac{\text{C. P. of 5 Fans} \quad (100 \quad \text{gain \%})}{100} \\ & \frac{₹4100 \quad (100 \quad 15)}{100} \quad ₹41 \quad 115 \quad ₹4715 \end{array}$$

S.P. of 1 fan
$$\frac{3 \cdot 4715}{5}$$
 \$\g\ 943

10. Let C.P. of a calculator fan ₹x

gain
$$\frac{1}{8}$$
 of $x \in \frac{x}{8}$

S.P. of a calculator fan $\stackrel{\textstyle \stackrel{\textstyle >}{\scriptstyle \sim}}{\scriptstyle \sim} 1152$ gain= S.P. - C.P.

$$\frac{x}{8}$$
 1152 x

$$\frac{9x}{8}$$
 1152

C.P. of a calculator fan ₹1024

11. Let C.P. of the article $\mathbf{\xi} x$

then,
$$(114\% \text{ of } x \quad 110\% \text{ of } x)$$
 $\stackrel{?}{=} 65$

$$\frac{114}{100} \quad x \quad \frac{110}{100} \quad x \quad \stackrel{?}{=} 65$$

$$\frac{114x \quad 110x}{100} \quad 65$$

$$4x \quad 65 \quad 100$$

$$65 \quad 100$$

 $x \quad \frac{65}{4} \quad 100$

12.

Total bought eggs = 200Broken eggs = 38

Remaining eggs 200 38 162

Let C.P. of each eggs ₹1

then, C.P. of 200 eggs ₹ 200 and C.P. of 162 eggs ₹ 162

S.P. of one dozen (i.e., 12) eggs ₹48

S.P. of 1 egg
$$\stackrel{?}{\underset{}_{\sim}} \frac{48}{12} \stackrel{?}{\underset{\sim}{\sim}} 4$$

and

S.P. on 162 egg
$$\stackrel{?}{=} 4$$
 162 $\stackrel{?}{=} 648$ gain = 8% C.P. $\frac{\text{S.P. } 100}{(100 \ P\%)} \frac{648 \ 100}{108} \stackrel{?}{=} 600$

13. Let Rice of the sugar before reduction $\forall x \text{ per kg}$

Now, price of sugar $\frac{x - 80}{100}$ $\stackrel{?}{=}$ $\frac{4x}{5}$ per kg

The reduced price = 80% of 8 kg $\frac{80}{100}$ 8 kg = ₹ 6.40 per kg.

14. *P* S.P. of 100 toys – C.P. of 100 toys

Let C.P. of 1 toys ₹1

S.P. of 80 toys ₹100

S.P. of 1 toys
$$\frac{100}{800}$$
 $\frac{5}{4}$

P S.P. of 1 toy – C.P. of 1 toy
$$₹ \frac{5}{4} ₹1 ₹ \frac{5}{4} 1 ₹ \frac{1}{4}$$

$$P\% = \frac{P}{C.P.} = 100 \% = \frac{\frac{1}{4}}{1} = 100 = 25\%$$

15. Let the merchant mixes 3 kg and 2 kg of rice of both respectively.

Total weight =
$$3 \text{ kg} + 2 \text{ kg} = 5 \text{ kg}$$

$$P\%$$
 $\frac{P}{\text{C.P.}}$ 100 % $\frac{13}{195}$ 100 $\frac{1300}{195}$ 6.66%

16. Given: Loss = C.P. of 45 apples – S.P. of 45 apples

Let C.P. of each apple ₹1

Loss = C.P. – S.P. ₹48 ₹45 ₹3
Loss %
$$\frac{\text{Loss}}{\text{C.P.}}$$
 100 $\frac{3}{48}$ 100 $\frac{100}{16}$ 6.25%

17. Correct weight = 1 kg = 1000 gm

False weight = 900 gm

$$P = \frac{\text{error}}{\text{correct wt.}} = 100 \%$$

$$\frac{100 + 100}{1000 + 100} = \frac{100 + 100}{900} = \frac{100}{9} = 11\frac{1}{9}\%$$

18. S.P.
$$200 \frac{100 \ 10}{100} \frac{200 \ 90}{100} \stackrel{?}{=} 180$$

After 5% further reduction, the new S.P. 180
$$\frac{100 - 5}{100}$$
 $\frac{180 - 95}{100}$ ₹ 171

19. Selling price of one rice quintal ₹896

Cost price
$$\frac{100}{100 \text{ Gain}} \text{SP CP} = \frac{12\%}{100 \text{ 12}} 896$$

21. Let cost price of Laptop $\stackrel{?}{\underset{}}{} x$ Selling price of Laptop $\stackrel{?}{\underset{}}{} x = \frac{6}{5} = \frac{6x}{5}$

20.

Profit
$$\stackrel{\text{def}}{=} \frac{6x}{5} \quad x \quad \stackrel{\text{def}}{=} \frac{x}{5}$$
% profit $\frac{x/5}{x}$ 100 20%

22. Let cost price of one fan $\mathbf{\xi} x$

other fan
$$\stackrel{?}{=} (3120 \ x)$$
profit of one fan $\stackrel{?}{=} x \frac{36}{100} \stackrel{?}{=} \frac{36}{100} x$
selling price $\stackrel{?}{=} x \frac{36x}{100} \frac{136x}{100} \text{ (SP CP + Profit)}$

Loss on other fan $\stackrel{?}{=}$ (3120 x) $\frac{15}{100}$

₹
$$\frac{46800}{100} \frac{15x}{100}$$

₹ $\frac{46800}{100} \frac{15x}{100}$ (SP CP Loess)

Selling price
$$(3120 x) \frac{(46800 15x)}{100}$$

$$\frac{31200 100x 46800 15x}{100}$$

$$\frac{265200 85x}{100}$$
According to question;
$$\frac{136x}{100} \frac{265200 85x}{100}$$

$$136x 265200 85x$$

$$\begin{array}{c|cccc}
136x & 265200 & 85x \\
136x & 85x & 265200 \\
221x & 265200 \\
x & \frac{265200}{221} & ₹ 1200
\end{array}$$

Cost price of one fan ₹ 1200

Cost price of other fan ₹ (3120 1200) ₹ 1920

Exercise 5.6

1. Let the C.P. be ₹100.

Then M.P. ₹100 20% of ₹100 100 20 ₹120 Discount = 10% of M.P. ₹120
$$\frac{10}{100}$$
 ₹12 S.P. = M.P. - discount ₹120 12 ₹108 Gain = S.P. - C.P. ₹108 100 ₹8 Gain % $\frac{\text{Gain}}{\text{C.P.}}$ 100 $\frac{8}{100}$ 100 8%.

2. Let C.P. be ₹ x.

Then after 10% loss,

% loss,
S.P. =
$$x$$
 x $\frac{10}{100}$ $\frac{90x}{100}$

But, given S.P. ₹5.4 per kg

$$\frac{90x}{100}$$
 5.4

$$x = \frac{5.4 - 100}{90} = ₹6$$

To earn a profit of 20%, the new S.P. would be

S.P. C.P.
$$P \times x \times \frac{20}{100}$$

 $\frac{120x}{100} \times \frac{120}{100} \times \frac{72}{10} \approx 7.20$

3. Discount % 10 %

Gain % 26 %

Let C.P.= ₹100 and M.P. ₹
$$x$$

S.P. = C.P. + Gain
=
$$100 + 126$$
 ₹ 126

and

$$S.P. = M.P. - 10\%$$
 of $M.P.$

keâ

$$x = \frac{10x}{100} = \frac{90x}{100}$$

90% of
$$x$$
 126

90% of
$$x$$
 126

$$\frac{90}{100}$$
 x 126

$$x \quad \frac{126 \quad 100}{90} \quad ₹140$$

Hence, M.P. 40% above C.P.

4. Let M.P. ₹ 100, D 10% and P 20%

Discount D% of M.P.

$$\frac{10}{100}$$
 100 ₹ 10

$$S.P. = M.P. - Discount$$

then S.P. ₹ 90

C.P.
$$\frac{100 \text{ G.P.}}{100 + P\%} = \frac{100 \text{ 90}}{100 \text{ 20}}$$

C.P.
$$\frac{100}{120}$$
 90 ₹75

New discount $\frac{15}{100}$ 100 ₹15

New
$$P\%$$
 $\frac{P}{\text{C.P.}}$ 100 $\frac{10}{75}$ 100 $\frac{40}{3}$ = 13.33%

5. Let M.P. $\not \in x$

$$(80\%x)$$
 $(75\% \text{ of } x)$ ₹ 500

$$5\% \text{ of } x = 500$$

$$x = \frac{500 - 100}{5} = ₹10,000$$

Cost price

$$\frac{80}{100}$$
 10,000 ₹ 8000.

6. Given,
$$d$$
 5%, Let M.P. $\not\equiv x$

S.P. = M.P.
$$d \times x = \frac{5}{100} \times \frac{x}{20} = \frac{19}{20}$$

C.P. ₹23.75
$$\frac{19x}{20} = 23.75$$
$$x = \frac{20 - 23.75}{19} = 25$$

Hence, M.P. ₹25.

7. Let C.P. =
$$\mathbf{\xi} x$$

Then M.P.
$$x \frac{20x}{100} \notin \frac{120x}{100}$$

$$d \quad 15\%$$
Discount 15% of $\frac{120x}{100} = \frac{15}{100} = \frac{120x}{100}$
S.P. = M.P. - Discount
$$\frac{120x}{100} = \frac{15}{100} = \frac{120x}{100} = \frac{15}{100} = \frac{15}{100}$$

$$\frac{120x}{100} = \frac{85}{100} = \notin 1.02x$$

$$P \quad \text{S.P. - C.P.} \quad \notin (1.02x = x) \quad \notin 0.02x$$

$$P\% = \frac{P}{\text{C.P.}} = 100 = \frac{0.02x}{x} = 100 = 2\%$$

8. Let the shopkeeper paid \mathcal{E} *x* for it.

80
$$x$$
 x $\frac{15}{100}$ 11 80 11 $\frac{115x}{100}$

69 $\frac{115x}{100}$ $x \notin 60$

9. Let M.P. ₹*x*

$$d_1$$
 5%, d_2 7%

$$d_{1} \leqslant \frac{5x}{100} \qquad ...(1)$$

$$S.P._{1} = M.P. \quad d \quad x \quad \frac{5x}{100} \quad \frac{95x}{100}$$

$$P_{1} \quad S.P_{1} \quad C.P. \quad \frac{95x}{100} \quad C.P.$$

$$d_{2} \quad \frac{7x}{100} \qquad ...(2)$$

$$S.P._{2} \quad M.P. \quad d_{2} \quad x \quad \frac{7x}{100} \quad \frac{93x}{100}$$

$$P_{2} \quad S.P._{2} \quad C.P. \quad \frac{93x}{100} \quad C.P. \text{Now}, P_{2} \quad P_{1} \quad 15$$

$$\frac{95x}{100} \quad d \quad 15 \quad \frac{93x}{100} \quad C.P. \qquad \frac{95x}{100} \quad \frac{93x}{100} \quad 15$$

$$\frac{2x}{100} = 15$$

$$x = \frac{15 - 100}{2} = 750$$

Hence, the M.P. of the article is ₹ 750.

10. Let C.P. of the table be ₹x.

$$625 \quad x \quad \frac{x \quad 20}{100} \quad 25$$

$$625 \quad 25 \quad \frac{120x}{100} \qquad \qquad 600 \quad \frac{120x}{100}$$

$$x \quad \frac{600 \quad 100}{120} \qquad \qquad x \quad 500$$

Hence, C.P. of the table is ₹ 500.

11. C.P. of the stationary ₹900

sale tax on it 6%
Sales tax 6% of ₹900

$$\frac{6}{100} 900 ₹54$$

Hence, Rachit paid ₹900 54 ₹954 to the shopkeeper.

12. Let printed price of the book ₹100

Given, M.P. of 2 set of bowls 13.

₹399, *P* 14% Let C.P. of one set of bowls

M.P. of 1 set of bowls
$$\stackrel{?}{=} \frac{399}{2} \stackrel{?}{=} 199.5$$

$$x \quad x \quad \frac{14}{100} \quad \stackrel{?}{=} 199.5$$

$$\frac{114x}{100} \quad \stackrel{?}{=} 199.5$$

$$x \quad \frac{199.5 \quad 100}{114} \quad \frac{19950}{114} \quad 175$$

Hence, the shopkeeper paid ₹1150 for one set of bowls.

Let S.P. (without tax) 14. ₹ x

$$\begin{array}{cccc}
x & x & \frac{8}{100} & ₹1242 \\
& & \frac{108x}{100} & 1242 \\
& & x & \frac{1242 & 100}{108} & \frac{2300}{2} & ₹1150
\end{array}$$

Hence, the S.P. (without tax) ₹1150.

15. Let M.P. ₹
$$x$$
, d 5%, g 10%, C.P. ₹ 950

S.P. = C.P.
$$\frac{100 \text{ g}\%}{100}$$
 $\frac{950 \text{ 110}}{100}$ 95 11 ₹1045

but,

S.P. = M.P.
$$d MP 1 \frac{d\%}{100}$$

1045
$$x = 1 \frac{5}{100}$$

95

1100

Hence, M.P. of a saree is ₹1100.

MCQ's

1. (a)

(c)

- 2. (b)
- 3. (d)
- (a)
- 7. (a)

5.

Compound Interest

4. (a)

Exercise 6.1

1. Principal for the first year ₹ 2000

Interest for the first year

$$\frac{\text{PRT}}{100} \quad \frac{2000 \quad 10 \quad 1}{100} \quad ₹ \ 200$$

Amount after the end of first year

₹ (2000 200)

Principal for the second fear

₹ 2200 ₹ 2200 10 1 100

Interest for the second year Amount after the end of second year ₹ 220

Compound interest

₹ (2200 220) ₹ 2420

Final Amount Principal ₹ (2420 2000) ₹ 420

Principal for the first year 2.

₹ 7,000; R 12%

Interest for the first year

$$\frac{P \quad R \quad T}{100} \\ \frac{7000 \quad 12 \quad 1}{} \quad \text{ ₹ 840}$$

Amount after the end of first year

100 ₹ (7000 840)

7840

Principal for the second year

₹ 7840

Interest for the second year

₹ 7840 12 1 ₹ 940.80

Amount after the end of first year Compound interest ₹ (7840 940.80) ₹ 8780.8 final Amount Principal

₹ (8780.80 7000) ₹ 1780.80